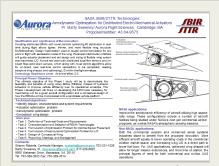
Aerodynamic Optimization for Distributed Electro Mechanical Actuators, Phase I

Completed Technology Project (2014 - 2014)


Project Introduction

Traditional hydraulic actuation and control surface layout both limit span wise control of lift distribution, and require large volume within wing cross-section, ultimately reducing efficiency. Mounting and support structures for traditional actuators, also necessitate drag-inducing protrusions in otherwise ideally smooth airfoils. Consequently, hydraulic systems are heavy and energy intensive as compared to electromechanical counterparts. Coupling distributed EMAs with novel controls optimizing lift distribution in real-time during flight allows lighter, thinner, and more flexible wing structure. Multidisciplinary Design Optimization used to couple control formulation for any point in flight with aeroelastic model of the wing. Parametric distribution of EMAs will guide actuator placement and aid design and sizing of flexible wing system that maximizes L/D. Aurora has used both distributed local flow sensors and onboard fiber-optic strain sensors, which along with novel control algorithms allow for on-board, near real-time control calculations to be completed, creating adaptive wing shapes, and optimize L/D within the flight envelope.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Ames Research Center(ARC)	Supporting	NASA	Moffett Field,
	Organization	Center	California

Aerodynamic Optimization for Distributed Electro Mechanical Actuators Project Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	
Project Transitions	
Images	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	
Target Destinations	3

Organizational Responsibility

Responsible Mission

Space Technology Mission Directorate (STMD)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Aerodynamic Optimization for Distributed Electro Mechanical Actuators, Phase I

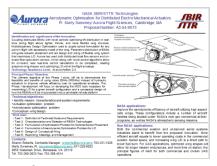
Completed Technology Project (2014 - 2014)

Primary U.S. Work Locations		
California	Massachusetts	

Project Transitions

C

June 2014: Project Start



December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137698)

Images

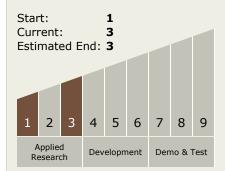
Project Image

Aerodynamic Optimization for Distributed Electro Mechanical Actuators Project Image (https://techport.nasa.gov/imag e/132510)

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Marty Sweeney

Technology Maturity (TRL)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.3 Mechanical Systems
 - └─ TX12.3.3 Design and Analysis Tools and Methods

Small Business Innovation Research/Small Business Tech Transfer

Aerodynamic Optimization for Distributed Electro Mechanical Actuators, Phase I

Completed Technology Project (2014 - 2014)

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

